Real Analysis

S. Sujith

Real S. Sujith

æ

◆□ ▶ ◆檀 ▶ ◆臣 ▶ ◆臣 ▶

abc

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Theorem 1.

Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. If $\{f'_n\}$ converges uniformly on [a,b], then $\{f_n\}$ converges uniformly on [a,b], to a function f and $f'(x) = \lim_{n\to\infty} f'_n(x)$ ($a \le x \le b$).

ъ

イロト 不得 とくほ とくほとう

there exists a positive integer N_1 such that $|f_n(x_0) - f_m(x_0)| < \frac{\epsilon}{2} \quad \forall n, m \ge N.$

æ

ヘロト 人間 とくほとくほとう

there exists a positive integer N_1 such that $|f_n(x_0) - f_m(x_0)| < \frac{\epsilon}{2} \forall n, m \ge N.$ \Rightarrow For the same N_2 we have $|f'_n(t) - f'_m(t)| < \frac{\epsilon}{2(b-a)} \forall t \in [a,b].$

イロト 不得 トイヨト イヨト 一日

there exists a positive integer N_1 such that $|f_n(x_0) - f_m(x_0)| < \frac{\epsilon}{2} \quad \forall n, m \ge N.$ \Rightarrow For the same N_2 we have $|f'_n(t) - f'_m(t)| < \frac{\epsilon}{2(b-a)} \quad \forall t \in [a, b].$ Let us now apply Mean Value Theorem to the functions $f_n - f_m$. Then, $|(f_n(x) - f_m(x)) - (f_n(t) - f_m(t))| \le |x - t| \frac{\epsilon}{2(b-a)}$ (1)

イロト 不得 トイヨト イヨト 一日

Now $\begin{aligned} |f_n(x) - f_m(x)| &= |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0)) + f_n(x_0) - f_m(x_0)| \\ &\leq |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)| \\ &\leq \frac{\epsilon |x-t|}{2(b-a)} + \frac{\epsilon}{2} \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへへ

$$\begin{aligned} \phi_n(t) &= \frac{f_n(t) - f_n(x)}{t - x} \\ \phi(t) &= \frac{f(t) - f(x)}{t - x} \text{ for } t \in [a, b] \\ |\phi_n(t) - \phi_m(t)| &= \left| f_n(t) - f_n(x) - \frac{f_m(t) - (-f_m(t))}{t - x} \right| \\ &\leq \frac{|x - t|}{|t - x|} < \frac{\epsilon}{2(b - a)} \forall m, n \ge N \text{ and } t \neq x \\ \therefore \{\phi_n(t)\} \text{ converges uniformly for } t \in [a, b] - \{x\} \end{aligned}$$

・ロト・4日・4日・4日・4日・4日・
のへで

$$\begin{split} \lim_{t \to x} \lim_{n \to \infty} \phi_n(t) &= \lim_{n \to \infty} \lim_{t \to x} \phi_n(t) \\ \Rightarrow \lim_{t \to x} \lim_{n \to \infty} \frac{f_n(t) - f_n(x)}{t - x} &= \lim_{n \to \infty} \lim_{t \to x} \frac{f_n(t) - f_n(x)}{t - x} \\ \lim_{t \to x} \frac{f(t) - f(x)}{t - x} &= \lim_{n \to \infty} f'_n(x) \\ f'(x) &= \lim_{n \to \infty} f'_n(x). \end{split}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Theorem 2 (Theorem7.18).

There exists a real continuous function on the real line which is nowhere diffrentiable.

ヨト・モート

æ

Define $\phi(x) = |x| (-1 \le x \le 1)$ Extend ϕ to the whole real line by setting $\phi(x+2) = \phi(x) \longrightarrow (1)$ Then for all real such that $|\phi(s) - \phi(t)| = ||s| - |t|| \le |s - t|$ $\Rightarrow \phi$ is continuous on \mathbb{R}

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Define $f(x) = \sum_{n=0}^{\infty} (3/4)^n \phi(4^n x) \longrightarrow (2)$ clearly, $|\phi| \le 1 (0 \le \phi \le 1)$ By theorem 7.10 The series converges uniformly on \mathbb{R} Also, the series given in (2) is a series of continuous function. Hence *f* is continuous on \mathbb{R} .

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Claim: Fix a real number x and a positive integer m put $\delta_m = \pm (1/2)(4^{-m})$ Where the sign is chosen. So that no integer has between $4^m x$ and $4^m (x + \delta_m)$ Define $\gamma_n = \frac{\phi(4^n (x + \delta_m)) - \phi(4^n x)}{\delta_m}$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

case(i)

n > mThen $4^n \delta_m$ is an even integer $4^n \delta_m = \pm (1/2) 4^{-m} 4^n = \pm (1/2) 4^{n-m}$ Therefore $\gamma_n = 0 \forall n > m$ case(ii) $0 \le n < m$ $|\gamma_n| = \frac{|\phi(4^n(x+\delta_m)) - \phi(4^nx)|}{|\delta_m|} \le \frac{|4^n(x+\delta_m) - 4^n(x)|}{|\delta_m|}$ (by(ii)) = 4^n

case(iii) $|\gamma_m| = \frac{|(\phi(4^m(x+\delta_m))-\phi(4^mx)|}{|\delta_m|} \le \frac{|4^m(x+\delta_m)-4^m(x)|}{|\delta_m|}$ (by(ii)) $|\gamma_m| = 4^m$ for n = mNow, $\frac{|(f(x+\delta_m)-f(x))|}{|\delta_m|} = \left|\sum_{n=0}^{\infty} (3/4)^n \gamma_n\right|$ $= \left| \sum_{n=0}^{m} (3/4)^n \gamma_n + \sum_{n=m+1}^{\infty} (3/4)^n \gamma_n \right|$ = $\left| \sum_{n=0}^{m} (3/4)^n \gamma_n \right| ?$ $= \left| (3/4)^m \gamma_m - (-\sum_{n=0}^{m-1} (3/4)^n \gamma_n \right|$ $\geq 3^m/4^m |\gamma_m| - \sum_{m=0}^{m-1} (3/4)^n |\gamma_m|$ Therefore $\frac{|f(x+\delta_m)-f(x)||}{|\delta_m|} \ge 3^m - \sum_{n=0}^{m-1} (3^n/4^n) 4^n$ $= \frac{3^{m} - \sum_{n=0}^{m}}{2} ?$ = $\frac{3^{m} + 1}{2}$ $\ge \frac{3^{m} + 1}{2}$ $\Rightarrow f'(x)$ does not exist for all $x \in \mathbb{R}$ Therefore f is nowhere differentiable (As $m \to \propto \delta_m \to 0$)

イロト 不得 とくほ とくほ とう

Real S. Sujith

!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●