Real Analysis

S. Sujith

abc

Theorem 1.

Suppose $\left\{f_{n}\right\}$ is a sequence of funtions, differentiable on $[a, b]$ and such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some point x_{0} on $[a, b]$. If $\left\{f_{n}^{\prime}\right\}$ converges uniformly on [a, b], then $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$, to a function f and $f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)(a \leq x \leq b)$.
there exists a positive integer N_{1} such that $\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right|<\frac{\epsilon}{2} \forall n, m \geq N$.
there exists a positive integer N_{1} such that
$\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right|<\frac{\epsilon}{2} \forall n, m \geq N$.
\Rightarrow For the same N_{2} we have
$\left|f_{n}^{\prime}(t)-f_{m}^{\prime}(t)\right|<\frac{\epsilon}{2(b-a)} \forall t \in[a, b]$.
there exists a positive integer N_{1} such that
$\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right|<\frac{\epsilon}{2} \forall n, m \geq N$.
\Rightarrow For the same N_{2} we have
$\left|f_{n}^{\prime}(t)-f_{m}^{\prime}(t)\right|<\frac{\epsilon}{2(b-a)} \forall t \in[a, b]$.
Let us now apply Mean Value Theorem to the functions $f_{n}-f_{m}$.
Then, $\left|\left(f_{n}(x)-f_{m}(x)\right)-\left(f_{n}(t)-f_{m}(t)\right)\right| \leq|x-t| \frac{\epsilon}{2(b-a)} \ldots \ldots \ldots .$.

$$
\begin{aligned}
& \text { Now } \\
& \begin{array}{l}
\left|f_{n}(x)-f_{m}(x)\right| \\
=\left|\left(f_{n}(x)-f_{m}(x)\right)-\left(f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right)+f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right| \\
\leq\left|\left(f_{n}(x)-f_{m}(x)\right)-\left(f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right)\right|+\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right| \\
\leq \frac{\epsilon|x-t|}{2(b-a)}+\frac{\epsilon}{2} \\
<\frac{\epsilon}{2}+\frac{\epsilon}{2}<\epsilon
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{n}(t)=\frac{f_{n}(t)-f_{n}(x)}{t-x} \\
& \phi(t)=\frac{f(t)-(x)}{t-x} \text { for } t \in[a, b] \\
& \left|\phi_{n}(t)-\phi_{m}(t)\right|=\left|f_{n}(t)-f_{n}(x)-\frac{f_{m}(t)-\left(-f_{m}(t)\right)}{t-x}\right| \\
& \leq \frac{|x-t|}{\mid t-x}<\frac{\epsilon}{2(b-a)} \forall m, n \geq N \text { and } t \neq x \\
& \therefore\left\{\phi_{n}(t)\right\} \text { converges uniformly for } t \in[a, b]-\{x\}
\end{aligned}
$$

$\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} \phi_{n}(t)=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} \phi_{n}(t)$
$\Rightarrow \lim _{t \rightarrow x} \lim _{n \rightarrow \infty} \frac{f_{n}(t)-f_{n}(x)}{t-x}=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} \frac{f_{n}(t)-f_{n}(x)}{t-x}$
$\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$
$f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$.

Theorem 2 (Theorem7.18).

There exists a real continuous function on the real line which is nowhere diffrentiable.

Define $\phi(x)=|x|(-1 \leq x \leq 1)$
Extend ϕ to the whole real line by setting $\phi(x+2)=\phi(x) \longrightarrow(1)$
Then for all real such that
$|\phi(s)-\phi(t)|=||s|-|t|| \leq|s-t|$
$\Rightarrow \phi$ is continuous on \mathbb{R}

Define $f(x)=\sum_{n=0}^{\infty}(3 / 4)^{n} \phi\left(4^{n} x\right) \longrightarrow(2)$
clearly, $|\phi| \leq 1(0 \leq \phi \leq 1)$
By theorem 7.10
The series converges uniformly on \mathbb{R}
Also, the series given in (2) is a series of continuous function. Hence f is continuous on \mathbb{R}.

Claim: Fix a real number x and a positive integer m
put $\delta_{m}= \pm(1 / 2)\left(4^{-m}\right)$
Where the sign is chosen. So that no integer has between
$4^{m} x$ and $4^{m}\left(x+\delta_{m}\right)$
Define $\gamma_{n}=\frac{\phi\left(4^{n}\left(x+\delta_{m}\right)\right)-\phi\left(4^{n} x\right)}{\delta_{m}}$

case(i)

$n>m$
Then $4^{n} \delta_{m}$ is an even integer
$4^{n} \delta_{m}= \pm(1 / 2) 4^{-m} 4^{n}= \pm(1 / 2) 4^{n-m}$ Therefore $\gamma_{n}=0 \forall n>m$
case(ii)

$$
\begin{aligned}
& 0 \leq n<m \\
& \left|\gamma_{n}\right|=\frac{\left|\phi\left(4^{n}\left(x+\delta_{m}\right)\right)-\phi\left(4^{n} x\right)\right|}{\left|\delta_{m}\right|} \leq \frac{\left|4^{n}\left(x+\delta_{m}\right)-4^{n}(x)\right|}{\left|\delta_{m}\right|}(\text { by }(\mathrm{ii}))=4^{n}
\end{aligned}
$$

case(iii)

$$
\left|\gamma_{m}\right|=\frac{\mid\left(\phi\left(4^{m}\left(x+\delta_{m}\right)\right)-\phi\left(4^{m} x\right) \mid\right.}{\left|\delta_{m}\right|} \leq \frac{\left|4^{m}\left(x+\delta_{m}\right)-4^{m}(x)\right|}{\left|\delta_{m}\right|}(\text { by }(\mathrm{ii}))
$$

$$
\left|\gamma_{m}\right|=4^{m} \text { for } n=m
$$

$$
\text { Now, } \frac{\left|\left(f\left(x+\delta_{m}\right)-f(x)\right)\right|}{\left|\delta_{m}\right|}=\left|\sum_{n=0}^{\infty}(3 / 4)^{n} \gamma_{n}\right|
$$

$$
=\left|\sum_{n=0}^{m}(3 / 4)^{n} \gamma_{n}+\sum_{n=m+1}^{\infty}(3 / 4)^{n} \gamma_{n}\right|
$$

$$
=\left|\sum_{n=0}^{m}(3 / 4)^{n} \gamma_{n}\right| ?
$$

$$
=\mid(3 / 4)^{m} \gamma_{m}-\left(-\sum_{n=0}^{m-1}(3 / 4)^{n} \gamma_{n} \mid\right.
$$

$$
\geq 3^{m} / 4^{m}\left|\gamma_{m}\right|-\sum_{n=0}^{m-1}(3 / 4)^{n}\left|\gamma_{n}\right|
$$

$$
\text { Therefore } \frac{\left.\mid f\left(x+\delta_{m}\right)-f(x)\right) \mid}{\left|\delta_{m}\right|} \geq 3^{m}-\sum_{n=0}^{m-1}\left(3^{n} / 4^{n}\right) 4^{n}
$$

$$
=\frac{3^{m}-\sum_{n=0}^{m}}{2} ?
$$

$$
\begin{aligned}
& =\frac{3^{m}+1^{2}}{m^{m^{2}}} \\
& \geq \frac{3^{2}}{2}
\end{aligned}
$$

$\Rightarrow f^{\prime}(x)$ does not exist for all $x \in \mathbb{R}$
Therefore f is nowhere diffrentiable (As $m \rightarrow \propto \delta_{m} \rightarrow 0$)

